Affiliated Connected Vehicle Test Bed Summit: Lessons Learned, Next Steps

ITS Industry Forum on Connected Vehicles: Moving from Research towards Implementation

> September 26, 2012 Chicago, Illinois

Presenter: Walton Fehr Program Manager ITS Joint Program Office

Key Objectives of the Affiliated Test Bed Concept

- "Harness the abilities of existing researchers and installations to move the technology toward full deployment"
- Create an organizational structure
- Share deployment lessons learned
- Develop a common technical platform
- Expand Test Bed options for users
- Share tools and resources across all facilities
- Serve as models for future deployments

Presentation Outline

- Overview of the Affiliated Test Bed Summit
- Highlights of the Seven Test Beds
 - Purpose
 - Assets
 - Applications
 - Geographic layout
- Developing Lessons Learned
- Concept for Affiliated Test Beds
- Next Steps

Connected Vehicle Test Bed Summit

- One-day Summit held at Turner-Fairbank Research Center on July 19,2012
- 50 participants
- Multiple Public Sector Test Beds Represented
 - Arizona / Maricopa County
 - California
 - Florida
 - Michigan / RCOC / US DOT
 - Minnesota
 - New York
 - Virginia / STOL

Highlights of Individual Test Beds

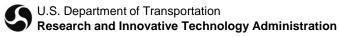
Arizona

Anthem

- Purpose
 - Advance multiple vehicle signal priority technology in a 'live' traffic environment
 - Deploy on emergency response vehicles (EV)
- Assets
 - o 6 pole mounted RSEs (Savari StreetWave)
 - Integrated with signal controller (Econolite ASC3)
 - Each RSE has DSRC, Wi-Fi/Bluetooth capabilities
 - Traffic Signal Priority Applications

 \star

- Fiber communications along the test bed
- CCTV
- Loop detection
- Applications
 - Priority Based Traffic Signal Control for EV and Transit (MCDOT/UA)
 - InFusion: Performance improvements of traffic Controllers by data fusion and analysis (SBIR Phase I – Savari, UA, SCSC)
 - SmartCross: Smartphone Signal Alert Status (SBIR Phase I – Savari, UA, SCSC)


California

Palo Alto

- Purpose
 - Assess/evaluate real-world implementations of VII
 - Inform future investment decisions on system management programs
- Assets
 - Vehicles: OEMs; transit buses; commercial trucks
 - OBEs from multiple vendors
 - Infrastructure Components
 - RSE, PC104, Signal Sniffer, Signal Controllers (Being updated from 170 to 2070)
 - Back End Servers
 - SDN @ 511 TIC in Oakland, Health Monitoring and management, Signage server

- Applications
 - Traveler Information (using 511)
 - Electronic Payment and Toll Collection
 - Ramp Metering
 - CICAS
 - Curve Over-Speed Warning
 - Auto Industry Applications (i.e., customer relations and vehicle diagnostics)
 - Multi-Modal Intelligent Traffic Signal System (Pooled fund study project)
 - o ISIG
 - o TSP
 - o PED-SIG
 - o PREEMPT
 - o FSP
 - PATH Cooperative "Green Wave": Nissan and BMW
 - At-Grade Light Rail Crossing Safety Research
 - Intelligent Transit Stop Information System

Florida

Orlando

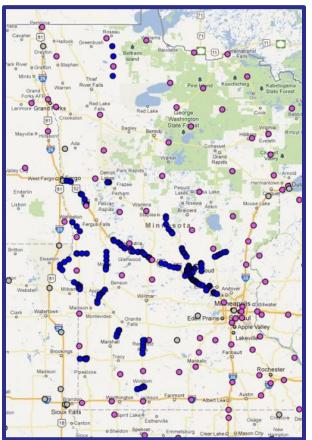
- Purpose
 - Support 18th ITS World Congress Technology Showcase demos in Orlando
- Assets
 - Vehicles (Road Rangers, Lynx buses, I-Ride Trolleys)
 - Infrastructure Components
 - 24 RSEs connected to FDOT fiber network
 - Back End Servers
 - District 5 RTMC SunGuide production servers
 - SunGuide Data Management Systems
- Applications
 - Developed SunGuide Software Connected Vehicle module
 - Captures and stores BSMs
 - Use BSMs to calculate travel times
 - Broadcast TAMs as part of standard Incident/Event Management
 - RSE Image

Oakland County

- Purpose
 - Research and testing resource for private developers to test DSRC-enabled applications
- Assets
 - 50 RSEs utilizing the 2007 version of the 802.11p and 1609 standards
 - SPaT on 22 Telegraph Rd RSEs broadcasting both J2735 and CICAS-V standards
 - 30 RSEs have complete IPv4 and IPv6 connectivity to datacenter and internet
 - 9 vehicles dedicated for research and development
 - 2 portable SPaT listeners, along with a DSRC sniffer
 - 2 custom, portable, solar powered trailers for road side equipment in targeted locations
- Applications
 - SPaT (with portable listener and GUI)
 - Security Credential Management System (SCMS)

Safety Pilot, Ann Arbor

- Purpose
 - 1 year of data collection to support NHTSA decision
- Assets
 - More than 2,800 vehicles
 - Cars, commercial trucks, transit
 - Integrated Safety Systems, Vehicle Awareness Devices, and Aftermarket Safety Devices
 - 73 lane-miles of roadway instrumented with 29 roadside-equipment installations



Minnesota

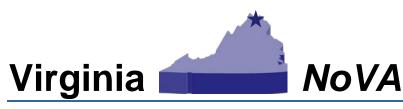
Various Locations

- Purpose
 - Minnesota Road Fee Test
 - Demonstrate technical feasibility of MBUF
 - Demonstrate flexibility of in-vehicle signage
 - Collect anonymous traveler info from consumer devices
 - CICAS-SSA
 - Obtain driver feedback on CICAS-SSA
 - Clarus
 - Collect, process and use mobile weather data
- Assets
 - vehicles
 - Minnesota Road Fee Test 500 volunteer vehicles
 - CICAS-SSA "Driver clinic" type demo
 - Clarus 80 MnDOT snow plows
 - OBEs
 - Minnesota Road Fee Test Android smart phone
 - CICAS-SSA Android smart phone + Arada DSRC
 - Clarus AVL system with cellular communications

CICAS-SSA & Clarus

Long Island

Purpose


New York

- To support the 2008 ITS World Congress in Manhattan and demonstrate CV capabilities of connected vehicle technologies.
- Assets
 - Vehicles: 4 plow trucks (Mack & International)
 - OBEs: Retrofitted 5.9 GHz DSRC (Kapsch) plus 20 Aftermarket Devices (Kapsch)
 - Infrastructure Components: 31 Interstate RSEs plus 8 Arterial @ traffic signals
 - Enhanced e-screening site with 2 RSEs
 - RSE along I-40, Greensboro, NC (CVII Testing)

- Applications
 - CVII compliant 5.9 GHz DSRC OBE system
 - CVII DSRC applications:
 - o CV driver I.D and verification
 - Wireless vehicle safety inspection (brake condition, tire pressure, light status, etc.)
 - CV to maintenance vehicles communication
 - Grade Crossing Driver Warnings (Invehicle signage & crossing signal activation)
 - Heavy Vehicle to Light Vehicle Driver Safety Warnings

- Purpose
 - Test connected vehicle technologies in congested urban areas.
- Assets
 - Vehicles: VTTI Fleet Vehicles (10 light vehicles, 1 motorcoach, 1 semi-truck. 220 Portable systems in personal vehicles)
 - OBEs (DSRC): Savari MobiWAVE & DENSO WAVE Radio; plus VTTI DAS
 - OBEs (Cellular): VTTI cellular-based ASDs; plus VTTI DAS
 - RSEs: 45 Savari StreetWAVE RSEs in NoVA; 10 at the Smart Road (VT)
 - Infrastructure Components: 10 Gigbit-ethernet backhaul
 - Back End Servers: VDOT network and transferred to servers off-site
 - Data Management Systems: VT petascale Scientific Data Warehouse
- Possible Applications:
 - Safety and Congestion Issues Related to Public Transportation, Pedestrians, and Bicyclists
 - Adaptive Lighting
 - Freeway Merge Management
 - Cooperative Intersection Control
 - Freeway Speed Harmonization
 - Freeway CACC Systems
 - Emergency V2V Communication
 - Eco-Speed Control Using V2I Communication
 - "Intelligent" Awareness System for Roadside Workers
 - Pavement Condition Measures and Utility Assessment
 - Adaptive Stop/Yield Signs

Saxton Laboratory – TFHRC

Purpose

- To focus on enhancing the state of the art of transportation operations research
- Asset
 - 2 Jeep Grand Cherokees
 - OBEs and RSEs
 - Fully instrumented intelligent Intersection with left turn and pedestrian signaling
- Applications:
 - Communications Network Simulation
 - Advanced Freeway Merge
 - Cooperative Adaptive Cruise Control
 - Advanced Signal Control
 - Applications for the Environment (AERIS)
 - Signal, Phase, and Timing (SPaT)
 - Vehicle Warnings
 - Emergency priority

Mclean

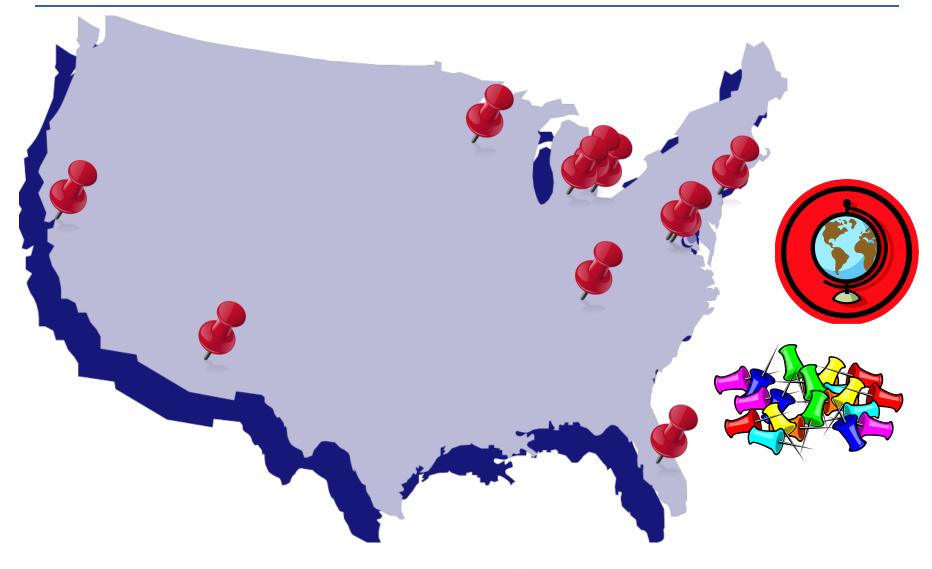
Lessons Learned & Issues from Test Beds -Technical

- Consensus on design and freezing of ConOps for applications after fine-tuning early in the lifecycle
- Remote monitoring of roadside equipment is necessary
- DSRC is highly reliable
 - Location of antenna important
- Clock Synchronization Critical
 - Using absolute time for traffic control/priority
- Overlapping MAPs
 - When two RSE's have range that overlaps, the OBE must determine which is the current and active MAP
- Non-safety critical operations are deployable now
- Heavy vehicles generally seen as easier to deploy

Lessons Learned & Issues from Test Beds – Technical (Cont.)

- Better change management and proper documentation of hardware and software is required
- Need management application for startup/shutdown of RSEs and the ability to log and retrieve data
- VISSIM Hardware-in-the-loop simulation environment to support development testing would be a useful tool
- Federal changes to standards and requirements drastically impact ability to deploy operational systems.
- Interpretation of standards still differs amongst system designers which adversely affects interoperability.
- Existing back office systems (GIS platform/mapping capabilities, system health and status, safety data feeds) require modification/enhancement to work in a connected vehicle environment
- Agreement on inter-system interfaces is necessary

Lessons Learned – Policy / Institutional


- Business models are extremely important as we lead to deployment
- Choose a clear direction and clearly assign and define roles for all participants
- Effective communication is vital to success
- Develop rich set of applications to attract users
- Ensure optimal set of equipped vehicles
- Enhanced synergy between software development teams and also between system architects
- Effectively engage private partners

Concept for Creating Affiliated Connected Vehicle Test Beds

Moving Toward the Concept of Affiliated Test Beds

U.S. Department of Transportation Research and Innovative Technology Administration

Create an Initial Organizational Structure

- Open to all
- Mutually beneficial able to arrive at a consensus
- Does not restrain trade
- Considering an ad hoc organization to benefit this research area
 - Authorized under MAP-21, Sec 52012(g) COLLABORATIVE RESEARCH AND DEVELOPMENT
 - Operate under the terms of a Memo of Cooperation
 - Voluntary, identified contributions
 - Voluntary acceptance of results
 - Focused projects or tasks to be accomplished such as
 - RSE specification update
 - SPaT message definition and distribution
 - Accommodation of other communication media

Possible Benefits of Being a Member

- Having a structured forum to share information and discuss issues associated with building, operating and maintaining a test bed.
 - Webinars
 - Face-to-Face meetings (member driven agendas)
- Having a recognized standing as an "official" test bed
 - "Intel Inside" type logo
- Tech transfer
 - Share lessons learned with other members
 - Implement those lessons learned where appropriate
 - Distributed work load (and requisite tech transfer) so that agencies and test beds can focus on projects relevant to their specific needs
 - Tech Transfer not limited to Affiliated Test Bed members Information needs to flow out to all state and local agencies.

What a Common Platform Might Look Like

Initial steps:

- Use Common Third Generation RSEs (Safety Pilot)
 - RSEs must be easily upgradeable
- Use of the Security Credential Management System (SCMS) for security
- Coordinate on Data Issues
 - Share data with other users/parties
 - Provide data to the USDOT RDE
 - Standard data formats
- Share Installation, Operations and Maintenance guidance and tools
- Begin Refinements

Likely First Refinement Task Assignment

- Start with RSE Specification ver. 3.0
- Review key RSE capabilities, reasons for the migration from Generation 2.0 to Generation 3.0
- Review experience with certification testing and Model Deployment installation
- Edit specification up to ver. 3.1
 - Start a weekly series of 2 hour web conferences in mid October, 2012
 - Review background during first 3 sessions
 - Determine refinements or additions during the second 3 sessions
 - Conduct two edit and comment cycles
 - Publish final release

Next Possible Steps

- Obtain Feedback at Chicago Workshop
 - Elements of a Memo of Cooperation
 - Details of first task assignment
- Publish an Affiliated Connected Vehicle Test Bed Status Report
- Develop a Memo of Cooperation for an Affiliated Connected Vehicle Test Bed Group
- Determine Guidelines for Participation and Membership

Elements of a Memo of Cooperation

- Benefits and responsibilities
- Organizational structure and membership

Details of first task assignment Timeline

